Лекция 6

Тема. Дифференциальное исчисление функции одной переменной.

План лекции:

- 1) Понятие производной функции (Производная. Односторонние производные. Дифференцируемость функции. Геометрический и физический смысл производной. Связь между дифференцируемостью и существованием производной, а также между дифференцируемостью и непрерывностью в точке. Свойства дифференцируемых функций. Таблица производных основных элементарных функций.
- 2) Дифференциал. (Определение дифференциала. Свойства дифференциала. Инвариантность формы первого дифференциала. Применение дифференциала в приближенных вычислениях.
- 3) Производная сложной функции и обратной функции.
- 4) Производные функций заданных параметрически, или неявно.
- 5) Производные и дифференциалы высших порядков. Формула Лейбница.

§1. Понятие производной функции

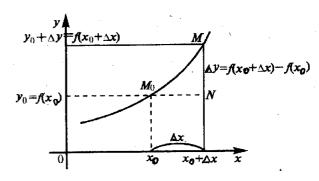
Пусть функция y = f(x) определена в некоторой окрестности точки x_0 .

ОПРЕДЕЛЕНИЕ. Приращением функции y = f(x) в точке x_0 называется разность

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$
, где $\Delta x = x - x_0$ -

приращение аргумента в точке x_0 .

ОПРЕДЕЛЕНИЕ. Если существует предел



(конечный или бесконечный) отношения приращения функции Δy к приращению аргумента Δx при произвольном стремлении Δx к нулю, то этот предел называется *производной* (конечной или бесконечной) функции y = f(x) в точке x_0 и обозначается одним из следующих символов: $f'(x_0), y'(x_0)$, $\frac{dy(x_0)}{dx}$. Таким образом, по определению:

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

ОПРЕДЕЛЕНИЕ. Пределы (конечные или бесконечные)

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, \qquad y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 называются соответственно *левой и правой производными* функции $y = f(x)$ (конечной или

называются соответственно *левой и правой производными* функции y = f(x) (конечной или бесконечной) в точке x_0 .

ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x_0 , если её приращение Δy может быть представлено в виде

$$\Delta y = A(x_0)(x - x_0) + o(x - x_0)$$
, где $A(x_0) \in R$.

Теорема (Критерий дифференцируемости функции). Для того чтобы функция y = f(x) являлась дифференцируемой в данной точке x_0 , необходимо и достаточно, чтобы она имела в этой точке конечную производную.

Операция нахождения производной y' называется $\partial u \phi \phi$ еренцированием функции y = f(x).

Функция, дифференцируемая во всех точках промежутка X, называется дифференцируемой на этом промежутке.

Геометрический смысл производной:

Если кривая задана уравнением y = f(x) или F(x, y) = 0, то $f'(x_0) = tg\alpha$ есть угловой коэффициент касательной (тангенс угла ее наклона с положительным направлением оси абсцисс).

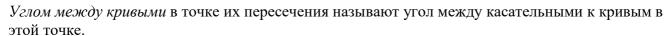
Уравнение касательной к кривой y = f(x) в точке $M_0(x_0, f(x_0))$

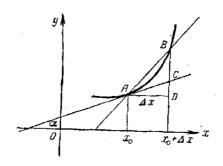
имеет вид:
$$y - f(x_0) = f'(x_0)(x - x_0)$$
,

Уравнение нормали (перпендикуляра) к кривой y = f(x) в точке $M_0(x_0, f(x_0))$:

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0) \cdot (f'(x_0) \neq 0)$$

При $f'(x_0) = 0$ уравнение нормали имеет вид $x = x_0$.





Физический (механический) смысл производной:

Если точка движется по закону s = s(t), где s - путь, t - время, то s'(t) представляет скорость изменения пути в момент t, т.е. скорость есть производная пути по времени. Вторая производная пути по времени s''(t) = [s'(t)]' = v'(t) есть скорость изменения скорости или ускорение точки в момент t.

Теорема (Зависимость между непрерывностью функции и дифференцируемостью). Если функция y = f(x) дифференцируема в точке x_0 , то она в этой точке непрерывна.

Обратная теорема, вообще говоря, неверна, т. е., если функция непрерывна в данной точке, то она не обязательно дифференцируема в этой точке. Так, например, функция $\mathbf{y} = |\mathbf{x}|$ непрерывна в точке $\mathbf{x} = \mathbf{0}$, т. к. $\lim_{x\to 0} |x| = 0$, но не дифференцируема в этой точке. В математике также известны непрерывные функции, не дифференцируемые ни в одной точке.

Таким образом, непрерывность функции – необходимое, но не достаточное условие дифференцируемости функции.

Замечание. Производная непрерывной функции не обязательно непрерывна. Если функция имеет непрерывную производную на некотором промежутке, то функция называется *гладкой* на этом промежутке. Если же производная функции допускает конечное число точек разрыва (причем первого рода), то такая функция на данном промежутке называется *кусочно гладкой*.

Правила дифференцирования.

Если С — постоянное число и u = u(x), v = v(x) — некоторые дифференцируемые функции, то справедливы равенства:

1)
$$(C)' = 0$$
; 2) $(Cu)' = Cu'$; 3) $(u \pm v)' = u' \pm v'$; 4) $(uv)' = u'v + uv'$; 5) $(\frac{u}{v})' = \frac{u'v - uv'}{v^2} (v \neq 0)$;

На основании определения производной и правил дифференцирования можно составить *таблицу производных* основных элементарных функций:

$(x^{\alpha})' = \alpha x^{\alpha - 1}$	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	
$(\log_a x)' = \frac{1}{x \ln a}$	$(\ln x)' = \frac{1}{x}$	$(a^x)' = a^x \ln a$	$(e^x)'=e^x$
$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$	$(tg\ x)' = \frac{1}{\cos^2 x}$	$(ctg x)' = -\frac{1}{\sin^2 x}$
$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$	$(arctgx)' = \frac{1}{1+x^2}$	$(arcctgx)' = -\frac{1}{1+x^2}$

ОПРЕДЕЛЕНИЕ. Логарифмической производной функции y = f(x) называется производная от логарифма этой функции, т. е. $\left(\ln f(x)\right)' = \frac{f'(x)}{f(x)}$.

Последовательное применение логарифмирования и дифференцирования функций называют логарифмическим дифференцированием. В случаях, когда надо найти производную от функции вида $y(x) = u(x)^{v(x)}$, то предварительное логарифмирование приводит к формуле

$$y' = (u^{v})' = (e^{v \ln u})' = u^{v} \ln u \cdot v' + vu^{v-1} \cdot u'$$

Пример 1. Для функции определить левую производную f'(x) и правую производную $f'_+(x)$,

если
$$f(x) = \begin{cases} \frac{x}{1 + e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Решение. Вычислим производную $\forall x \neq 0$: $f'(x) = f'_{+}(x) = \frac{1 + e^{\frac{1}{x}} + xe^{\frac{1}{x}} \cdot \frac{1}{x^2}}{(1 + e^{\frac{1}{x}})^2} = \frac{e^{\frac{1}{x}}(1 + x) + x}{x(1 + e^{\frac{1}{x}})^2}$

Докажем, что функция f(x) непрерывна в точке x = 0:

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{x}{1} = 0 = f(0)$. \Rightarrow Можно найти правую и левую производные в этой точке:

$$f'_{+}(0) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} \frac{x}{x(1 + e^{\frac{1}{x}})} = 0, \quad f'_{-}(0) = \lim_{x \to 0-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0-} \frac{x}{x(1 + e^{\frac{1}{x}})} = 1$$

Пример 2. Найти значение производной функции y = |x| в точке x = 0.

Решение. При любом приращении независимой переменной х равном Δx , приращение функции в

$$\Delta y = \left| \Delta x \right| = \begin{cases} -\Delta x, & ecnu \quad \Delta x < 0, \\ \Delta x, & ecnu \quad \Delta x > 0. \end{cases}$$
 Из определения производной следует, что

 $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \begin{cases} -1, & ecnu & \Delta x < 0, \\ 1, & ecnu & \Delta x > 0. \end{cases}$ Это означает, что в точке x = 0 функция y = |x| не имеет

производной, хотя она и непрерывна в этой точке, поскольку $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} |\Delta x| = 0$.

<u>Пример 3.</u> Найти производную функции $y = (\sin 2x)^{x^3}$

Peшение. Логарифмируя данную функцию, получаем $\ln y = x^3 \ln \sin 2x$. Дифференцируем обе части последнего равенства по х: $(\ln y)' = (x^3)' \ln \sin 2x + x^3 (\ln \sin 2x)'$. Отсюда $\frac{y'}{v} = 3x^2 \ln \sin 2x + x^3 \frac{1}{\sin 2x} 2\cos 2x$. Далее, $y' = y(3x^2 \ln \sin 2x + 2x^3 ctg 2x)$. Окончательно имеем:

$$y' = (\sin 2x)^{x^3} (3x^2 \ln \sin 2x + 2x^3 ctg 2x).$$

§2. Дифференциал.

Пусть функция y = f(x) определена на промежутке X и дифференцируема в некоторой окрестности точки $x \in X$. Тогда существует конечная производная

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x)$$

Можно записать следующее:

$$\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x),$$

где $\alpha(\Delta x)$ - бесконечно малая величина при $\Delta x \to 0$, откуда $\Delta y = f'(x)\Delta x + \alpha(\Delta x)\Delta x$

Таким образом, приращение функции Δy состоит из двух слагаемых:

- 1) линейного относительно Δx ;
- 2) нелинейного, представляющего бесконечно малую более высокого порядка, чем Δx , ибо

$$\lim_{\Delta x \to 0} \frac{\alpha(\Delta x) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \alpha(\Delta x) = 0$$

Сравнивая полученный вид приращения Δy с его видом в определении дифференцируемой функции в точке x_0 , получим, что $A(x_0) = f'(x_0)$.

ОПРЕДЕЛЕНИЕ. Дифференциалом (или первым дифференциалом) функции y = f(x) в точке x_0 (дифференцируемой в этой точке) называется функция аргумента Δx :

$$dy = f'(x_0) \Delta x$$

При $f'(x_0) \neq 0$ дифференциал является главной (линейной относительно Δx) частью приращения функции в точке x_0 .

ОПРЕДЕЛЕНИЕ. Дифференциалом независимой переменной x называется приращение этой переменной: $dx = \Delta x$.

Таким образом, дифференциал функции y = f(x) в точке x_0 имеет вид: $\mathbf{dy} = \mathbf{f}'(\mathbf{x}_0)\mathbf{dx}$.

Очевиден тот факт, что для существования дифференциала функции y = f(x) в точке x_0 необходимо и достаточно, чтобы существовала конечная производная $f'(x_0)$.

Справедливы следующие утверждения относительно свойств дифференциала:

1)
$$dc = 0$$
, $\partial e \ c = const.$ 2) $d(cu) = c du.$ 3) $d(u \pm v) = du \pm dv.$

4)
$$\mathbf{d(uv)} = \mathbf{v} \, \mathbf{du} + \mathbf{u} \, \mathbf{dv}$$
. 5) $\mathbf{d} \left(\frac{\mathbf{u}}{\mathbf{v}} \right) = \frac{\mathbf{v} \, \mathbf{du} - \mathbf{u} \, \mathbf{dv}}{\mathbf{v}^2}$.

- 6) Если y = f(u) и $u = \varphi(x)$ дифференцируемые функции от своих аргументов, то дифференциал функции $\mathbf{df(u)} = \mathbf{f'(u)du}$, это означает, что формула дифференциала не изменяется, если вместо функции от независимой переменной x рассматривать функцию от зависимой переменной u. Это свойство дифференциала получило название инвариантности (т. е. неизменности) формы первого дифференциала.
- 7) Применение дифференциала в приближенных вычислениях. При достаточно малых значениях Δx приращение функции $\Delta y \approx dy$, т.е. $\mathbf{f}(\mathbf{x} + \Delta \mathbf{x}) \approx \mathbf{f}(\mathbf{x}) + \mathbf{f}'(\mathbf{x}) \Delta \mathbf{x}$. Чем меньше значение Δx , тем точнее данная формула. Можно также записать в виде асимптотического равенства

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0),$$

позволяющую при малых значениях $x - x_0$ приближенно вычислять значения функции в точках x близких к точке x_0 , где значения функции f и ее производной известны.

Пример 4. Для функции $f(x) = x^3 - 2x + 1$ определить: 1) $\Delta f(1)$; 2) df(1); и сравнить их, если:

a) $\Delta x = 1$, 6) $\Delta x = 0.1$, B) $\Delta x = 0.01$

Решение. f(1) = 0

$$\Delta f(1) = f(1 + \Delta x) - f(1) = (1 + \Delta x)^3 - 2(1 + \Delta x) + 1 - 0 = \Delta x + 3\Delta x^2 + \Delta x^3$$
 (1)

$$f'(x) = 3x^2 - 2 \implies f'(1) = 1$$

$$df(1) = f'(1) \cdot \Delta x \quad \Rightarrow \quad df(1) = \Delta x \tag{2}$$

 \Rightarrow по формулам (1) и (2) получаем:

a)
$$\Delta f(1)$$
 $df(1)$ 1

б) $\Delta x = 0,1$	0,131	0,1
B) $\Delta x = 0.01$	0,010301	0,01

§3. Производные сложной функции и обратной функции.

Производная сложной функции.

Теорема. Если функция $u = \varphi(x)$ имеет в точке x_0 конечную производную $\varphi'(x_0)$, а функция y = f(u) имеет в точке $u_0 = \varphi(x_0)$ конечную производную $f'(u_0)$, то сложная функция $y = f(\varphi(x)) = F(x)$ дифференцируема в точке x_0 , причем $F'(x_0) = f'(\varphi(x_0)) \cdot \varphi'(x_0)$ или $y_x' = y_u' \cdot u_x'$. (То есть производная сложной функции равна произведению ее производной по промежуточному аргументу на производную промежуточного аргумента по независимой переменной).

Пример 5. Найти производную функции $y = \left(x^2 + \frac{1}{x}\right)^3$

Решение. Здесь $y = u^3$, $u = x^2 + \frac{1}{x}$. Значит

$$y' = (u^3)' \cdot (x^2 + \frac{1}{x})' = 3u^2 (2x - \frac{1}{x^2}) = 3(x^2 + \frac{1}{2})^2 (2x - \frac{1}{x^2}).$$

Пример 6. Найти производную функции $y = \sqrt{\sin(\ln x)}$

Решение. Здесь $y = \sqrt{t}$, $t = \sin u$, $u = \ln x$. Применив правило дифференцирования сложной функции, получим

$$y' = (\sqrt{t})' \cdot (\sin u)' \cdot (\ln x)' = \frac{1}{2} t^{-\frac{1}{2}} \cdot \cos u \cdot \frac{1}{x} = \frac{1}{2} (\sin u)^{-\frac{1}{2}} \cdot \cos u \cdot \frac{1}{x} = \frac{1}{2} (\sin u)^{-\frac{1}{2}} \cdot \cos u \cdot \frac{1}{x} = \frac{\cos(\ln x)}{2x\sqrt{\sin \ln x}}.$$

Производная обратной функции.

Теорема. Если функция y=f(x)- определена, непрерывна и строго монотонна в некоторой окрестности точки x_0 и в точке x_0 существует производная $f'(x_0) \neq 0$, то существует обратная функция $x=f^{-1}(y)$, имеющая производную в точке $y_0=f(x_0)$, причем

$$(f^{-1}(y_0))' = \frac{1}{f'(x_0)}$$
 (или $x'_y = \frac{1}{y'_x}, y'_x \neq 0$).

§4. Производные функций заданных параметрически, или неявно.

Производная функции, заданной параметрически.

Рассмотрим функцию y = f(x). Систему соотношений $x = \varphi(t)$, $y = \psi(t)$, где $\alpha < t < \beta$, называют параметрическим представлением функции y = f(x), если $\psi(t) = f(\varphi(t))$ для всех $t \in (a,b)$. Переменная t называется в этом случае параметром.

Пусть функция f задана параметрически:

$$x = \varphi(t), \quad y = \psi(t), \quad \alpha < t < \beta,$$

где y=f(x) и функции φ и ψ дифференцируемы, причем $\varphi'(t) \neq 0$, то

$$f'(x) = \frac{\psi'(t)}{\varphi'(t)}.$$

Можно также записать в виде: $y'_x = \frac{y'_t}{x'_t}$

Производная функции, заданной неявно.

Функция называется *явной*, если она задана формулой, в которой правая часть не содержит зависимой переменной; например, функция $y=x^2+5x+1$.

Функция у аргумента х называется неявной, если она задана уравнением F=(x,y)=0, не разрешенным относительно зависимой переменной. Например, функция $y(y\ge0)$, заданная уравнением $x^3+y^2-x=0$. (Заметим, что последнее уравнение задает две функции, $y=\sqrt{x-x^3}$ при $y\ge0$, и $y=-\sqrt{x-x^3}$ при y<0).

Если дифференцируемая функция y = f(x) задана неявно уравнением F(x, y) = 0, то, дифференцируя тождество $F[x, f(x)] \equiv 0$ по x (как сложную функцию), можно определить f'(x). Дифференцируя выражение f'(x) по x, можно определить f''(x) и т. д.

$$\frac{d}{dx}(F(x, f(x))) = 0.$$

То есть мы дифференцируем обе части уравнения, рассматривая у как функцию от x, а затем из полученного уравнения находим производную y'.

§5. Производные и дифференциалы высших порядков.

$$f''(x)=(f'(x))'$$
.

Аналогично если существует производная от второй производной, то её называют третьей производной и обозначают f'''(x)=(f''(x))' и т.д.

ОПРЕДЕЛЕНИЕ. *Производной n-го порядка* называется производная от производной (n-1)-го порядка. Производные высших порядков вычисляются последовательным дифференцированием данной функции: $\mathbf{y}'' = (\mathbf{y}')', \ \mathbf{y}''' = (\mathbf{y}')', \ ..., \ \mathbf{y}^{(n)} = (\mathbf{y}^{(n-1)})'$. Обозначают

$$y^{(n)}, f^{(n)}(x), \frac{d^n y}{dx^n}.$$

Если функция f(x) имеет непрерывную производную $f^{(n)}(x)$ на интервале (a,b), то кратко пишут $f(x) \in \mathcal{C}^{(n)}(a,b)$. В частности, если f(x) имеет непрерывные производные всех порядков на (a,b), то употребляют запись: $f(x) \in \mathcal{C}^{(\infty)}(a,b)$.

Механический смысл второй производной. Ранее было установлено, что если точка движется прямолинейно по закону $\mathbf{s} = \mathbf{s}(t)$ (где s- путь, t – время), то s'(t) представляет скорость изменения пути в момент t_0 . Следовательно, вторая производная пути по времени s $''(t_0) = (\mathbf{s}'(t_0))'$ есть скорость изменения скорости или ускорение точки в момент t_0 .

Найдем производные п-го порядка от основных элементарных функций.

Справедливы формулы

$$(a^{x})^{(n)} = a^{x} \ln^{n} a, \quad a > 0;$$

$$(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right);$$

$$(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right);$$

$$(x^{m})^{(n)} = m(m-1)\dots(m-n+1)x^{m-n};$$

$$(\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^{n}}$$

ОПРЕДЕЛЕНИЕ. Дифференциалом n-го nорядка $d^n y$ называется дифференциал от дифференциала (n-1)-го nорядка этой функции, т.е. $d^n y = d(d^{n-1}y)$.

B частности, $d^2y = d(dy)$.

Если x — независимая переменная, то $dx = {\rm const}\,$ и $d^2x = d^3x = \ldots = d^nx = 0.$ В этом случае справедлива формула

 $d^n f(x) = f^n(x) (dx)^n.$

В заключение отметим, что дифференциалы второго и более высоких порядков не обладают свойством инвариантности формы в отличие от дифференциала первого порядка.

Теорема (Формула Лейбница).

Если u и v - n-кратно дифференцируемые функции, то

$$(uv)^{(n)} = \sum_{i=0}^{n} C_n^i u^{(i)} v^{(n-i)}.$$

где $u^{(0)} = u$, $v^{(0)} = v$ и $C_n^i = \frac{n!}{i!(n-i)!}$ - число сочетаний из п элементов по i.

Аналогично для дифференциала $d^n(uv)$ получаем:

$$d^n(uv) = \sum_{i=0}^n C_n^i d^{n-i} u d^i v_1$$

где положено $d^0u = u$ и $d^0v = v$.

Пример 7. Найдем производную третьего порядка функции $y = 3x^3 + 1$.

Решение. $y' = (3x^3 + 1)' = 9x^2$; $y'' = (9x^2)' = 18x$; y''' = (18x)' = 18.

<u>Пример 8.</u> $(x \cdot \cos x)^{(100)} = x(\cos x)^{(100)} + 100(\cos x)^{(99)} = x \cdot \cos x + 100\sin x.$